
Sample Data Analysis: Simple Regression

- Enough theory (for now: more to come later!)
- To look at the data: type cd AFNI data3/afni; then afni
- Switch Underlay to dataset epi r1
 - > Then Axial Image and Graph
 - > FIM-Pick Ideal; then click afni/epi r1 ideal.1D; then Set
 - > Right-click in image, Jump to (ijk), then 22 43 12, then Set

- Data clearly has activity in sync with reference
 - o 30 s blocks
- Data also has a big spike, which is very annoying
 - Subject head movement!

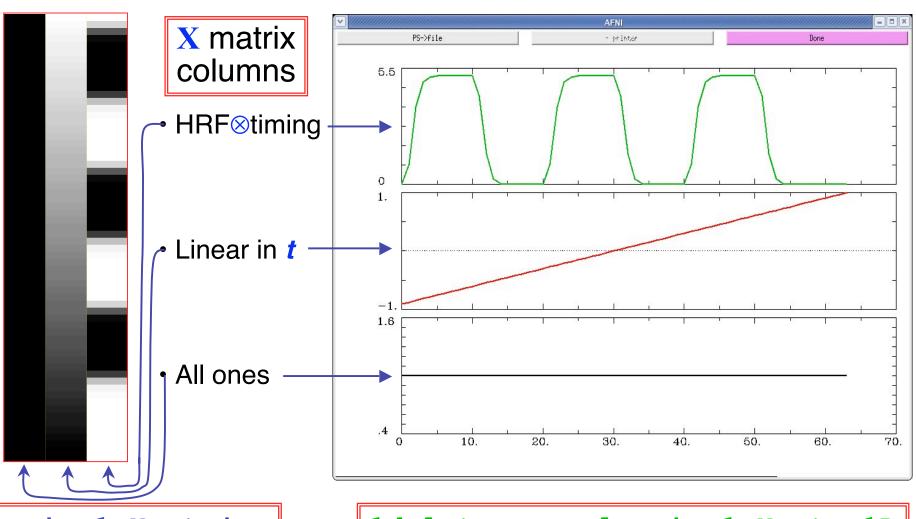
Preparing Data for Analysis

- Six preparatory steps are common:
 - > Temporal alignment: program 3dtshift
 - Image registration (AKA realignment): program 3dvolreg
 - > Image smoothing: program <a>3dmerge
 - > Image masking: program 3dClipLevel or 3dAutomask
 - Conversion to percentile: programs <u>3dTstat</u> and <u>3dcalc</u>
 - Censoring out time points that are bad: program <u>3dToutcount</u> or <u>3dTqual</u>
- Not all steps are necessary or desirable in any given case
- In this first example, will only do registration, since the data obviously needs this correction

Data Analysis Script

In file epi r1 regress: 3dvolreg (3D image registration) 3dvolreg -base 3 will be covered in detail in a later -verb presentation -prefix epi r1 reg 🔸 filename to get estimated motion parameters -1Dfile epi r1 mot.1D epi r1+orig <u>3dDeconvolve</u> = regression code 3dDeconvolve Name of input dataset (from 3dvolreg) -input epi r1 reg+orig -nfirst Number of input model time series -num stimts 1 -stim times 1 epi r1 times.1D $\setminus \leftarrow \rightarrow$ Name of input stimulus class timing file $(\tau's)$ 'BLOCK(30)' Name for results in AFNI menus -stim label 1 AllStim \ Indicates to output *t*-statistic for β weights -tout Name of output "bucket" dataset (statistics) -bucket epi r1 func -fitts epi rl fitts Name of output model fit dataset Name of image file to store X [AKA R] matrix -xjpeg epi r1 Xmat.jpg Name of text file in which to store X matrix -x1D epi r1 Xmat.x1D

Type tcsh epi_r1_regress; then wait for programs to run


Text Output of the epi r1 decon script

 3dvolreg Output ++ 3dvolreq: AFNI version=AFNI 2007 05 29 1644 (Sep 5 2007) [64-bit] ++ Reading input dataset ./epi r1+orig.BRIK ++ Edging: x=3 y=3 z=2 ++ Initializing alignment base ++ Starting final pass on 67 sub-bricks: 0..1..2..3.. *** ...63..64..65..66.. ++ CPU time for realignment=5.35 s [=0.0799 s/sub-brick] ++ Min : roll=-0.103 pitch=-1.594 yaw=-0.038 dS=-0.354 dL=-0.021 dP=-0.191 ++ Mean: roll=-0.047 pitch=+0.061 yaw=+0.023 dS=+0.006 dL=+0.032 dP=-0.076 ++ Max : roll=+0.065 pitch=+0.290 yaw=+0.055 dS=+0.050 dL=+0.120 dP=+0.113 ++ Max displacement in automask = 2.46 (mm) at sub-brick 42 } Maximum movement estimate ++ Wrote dataset to disk in ./epi_r1_reg+orig.BRIK 3dDeconvolve Output ++3dDeconvolve: AFNI version=AFNI 2007 05 29 1644 (Sep 5 2007) [64-bit] ++ Authored by: B. Douglas Ward, et al. ++ loading dataset epi r1 reg+orig *+ WARNING: Input polort=1; Longest run=201.0 s; Recommended minimum polort=2 Consider '-polort 2' ++ -stim times using TR=3 seconds ++ '-stim times 1' using LOCAL times ++ Wrote matrix image to file epi r1 Xmat.jpg ++ Wrote matrix values to file epi_r1_Xmat.x1D Output file indicators ++ Signal+Baseline matrix condition [X] (64x3): 2.59165 ++ VERY GOOD ++ ++ Signal-only matrix condition [X] (64x1): 1 ++ VERY GOOD ++ ++ Baseline-only matrix condition [X] (64x2): 1.08449 ++ VERY GOOD ++ **Assurance** ++ -polort-only matrix condition [X] (64x2): 1.08449 ++ VERY GOOD ++ ++ Matrix inverse average error = 5.62791e-16 ++ VERY GOOD ++ ++ Calculations starting; elapsed time=0.238 ++ voxel loop:0123456789.0123456789.0123456789.0123456789.0123456789.} Progress meter/pacifier ++ Calculations finished; elapsed time=1.417 ++ Wrote bucket dataset into ./epi_r1_func+orig.BRIK ++ Wrote 3D+time dataset into ./epi_r1_fitts+orig.BRIK Output file indicators ++ #Flops=3.11955e+08 Average Dot Product=4.50251

• If a program crashes, we'll need to see this text output (at the very least)!

Stimulus Timing: Input and Visualization

```
epi_r1_times.1D = 9.0 69.0 129.0
= times of start of each BLOCK(20)
```


epi_r1_Xmat.jpg

1dplot -sepscl epi_r1_Xmat.x1D

Look at the Activation Map

- Run afni to view what we've got (note: a subtle test over only 1 run)
 - Switch Underlay to epi_r1_reg (output from 3dvolreg)
 - Switch Overlay to epi_r1_func (output from 3dDeconvolve)
 - Sagittal Image and Graph viewers
 - > FIM -> Ignore -> 3 to have graph viewer not plot 1st 3 time pts
 - > FIM→Pick Ideal; pick epi_r1_ideal.1D (output from waver)
- Define Overlay to set up functional coloring
 - \rightarrow Olay \rightarrow Allstim[0] Coef (sets coloring to be from model fit β)
 - > Thr -> Allstim[0] t-s (sets threshold to be model fit t-statistic)
 - See Overlay (otherwise won't see the function!)
 - > Play with threshold slider to get a meaningful activation map (e.g., t=3 is a decent threshold more on thresholds later)
 - > Again, use Jump to (i j k) to jump to index coordinates 22 43 12

More Looking at the Results

- Graph viewer: Opt→Tran 1D→Dataset #N to plot the model fit dataset output by 3dDeconvolve
 - Will open the control panel for the Dataset #N plugin
 - Click first Input on; then choose Dataset epi_r1_fitts+orig
 - Also choose Color dk-blue to get a pleasing plot
 - Then click on Set+Close (to close the plugin's control panel)
 - Should now see fitted time series in the graph viewer instead of data time series
 - Graph viewer: click Opt→Double Plot→Overlay on to make the fitted time series appear as an overlay curve
 - This tool lets you visualize the quality of the data fit
- Can also now overlay function on MP-RAGE anatomical by using Switch Underlay to anat+orig dataset
 - Probably won't want to graph the anat+orig dataset!

Setting the Threshold: Principles

- Bad things (i.e., errors):
 - False positives activations reported that aren't really there ≡ Type I errors (i.e., activations from noiseonly data)
 - False negatives non-activations reported where there should be true activations found ≡ Type II errors
- Usual approach in statistical testing is to control the probability of a type I error (the "p-value")
- In FMRI, we are making many statistical tests: one per voxel (≈20,000+) the result of which is an "activation map":
 - Voxels are colorized if they survive the statistical thresholding process

Setting the Threshold: Bonferroni

- If we set the threshold so there is a 1% chance that any given voxel is declared "active" even if its data is pure noise (FMRI jargon: "uncorrected" p-value is 0.01):
 - And assume each voxel's noise is independent of its neighbors (not really true)
 - With 20,000 voxels to threshold, would expect to get 200 false positives this may be as many as the true activations! Situation: Not so good.
- Bonferroni solution: set threshold (e.g., on *t*-statistic) so high that uncorrected *p*-value is 0.05/20000=2.5e-6
 - Then have only a 5% chance that even a single false positive voxel will be reported
 - Objection: will likely lose weak areas of activation

Setting the Threshold: Spatial Clustering

- Cluster-based detection lets us lower the statistical threshold and still control the false positive rate
- Two thresholds:
 - First: a per-voxel threshold that is somewhat low (so by itself leads to a lot of false positives, scattered around)
 - Second: form clusters of spatially contiguous (neighboring) voxels that survive the first threshold, and keep only those clusters above a volume threshold e.g., we don't keep isolated "active" voxels
- Usually: choose volume threshold, then calculate voxel-wise statistic threshold to get the overall "corrected" p-value you want (typically, corrected p=0.05)
 - No easy formulas for this type of dual thresholding, so must use simulation: AFNI program AlphaSim

AlphaSim: Clustering Thresholds

Simulated for brain mask of 18,465 voxels

• Look for smallest cluster with corrected *p* < 0.05

Uncorrected	Cluster Size	Cluster Size
<i>p</i> -value	/ Corrected p	/ Corrected p
(per voxel)	(uncorrelated)	(correlated 5 mm)
0.0002	2 / 0.001	3 / 0.004
0.0004	2/0.008	4 / 0.012
0.0007	2 / 0.026	3 / 0.031
0.0010	3 / 0.001	4 / 0.007
0.0020	3 / 0.003	4 / 0.032
0.0030	3 / 0.008	5 / 0.013
0.0040	3 / 0.018	5 / 0.029
0.0050	3 / 0.030	6 / 0.012
0.0060	4 / 0.003	6 / 0.023
0.0070	4 / 0.004	6 / 0.036
0.0080	4 / 0.006	7 / 0.016
0.0090	4 / 0.010	7 / 0.027
0.0100	4 / 0.015	7 / 0.042

Corresponds to sample data

Can make activation maps for display with cluster editing using 3dmerge program or in AFNI GUI (new: Sep 2006)

End of Important Aside

Multiple Stimulus Classes

- The experiment analyzed here in fact is more complicated
 - > There are 9 related communication stimulus types in a 3x3 design of Category by Affect (stimuli are shown to subject as pictures)
 - Telephone, Email & Face-to-face = categories
 - Negative, Positive & Neutral = affects
 - √ telephone stimuli: tneg, tpos, tneu
 - √ email stimuli: eneg, epos, eneu
 - √ face-to-face stimuli: fneg, fpos, fneu
 - > Each stimulus type has 3 presentation blocks of 30 s duration
 - > Scrambled pictures are shown between blocks
 - > 9 imaging runs, 64 useful time points in each
 - Originally, 67 TRs per run, but skip first 3 for MRI signal to reach steady state
 - So 576 TRs of data, in total
 - Already registered and put together into dataset rall_vr+orig

Regression with Multiple Model Files

- Script file rall_decon does the job:
- Run this script by typing tcsh rall_decon (takes a few minutes)

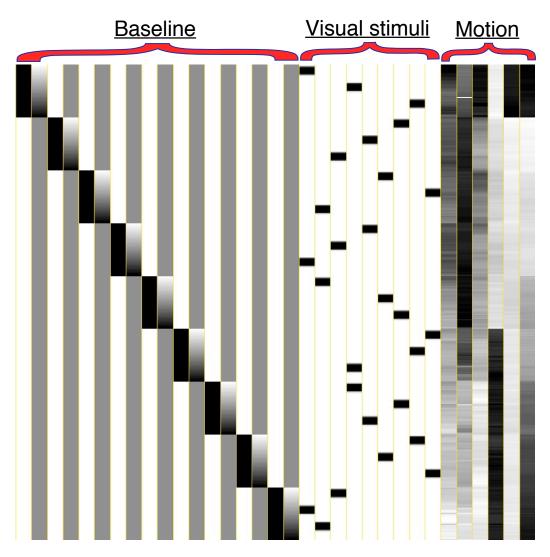
```
3dDeconvolve -input rall vr+orig
                                                            \ ← try to use 2 CPUs
   -jobs 2
   -concat '1D: 0 64 128 192 256 320 384 448 512'
                                                            -num stimts 15
                                                 -stim times 1 '1D: 0 * | | 120 |
                                            -stim times 2 '1D: * * | | 120 |
   -stim times 3 '1D: * * | 120 | | 60 |
                                                 'BLOCK (30) ' \ ← response model
                                                 'BLOCK(30)' \
   -stim times 4 '1D: 60 * | | | | 120 | 0 |
   -stim times 5 '1D: * * | 60 | |
                                                 'BLOCK(30)' \
   -stim times 6 '1D: * * | | 0 | | 60 |
                                                 'BLOCK(30)' \
   -stim times 7 '1D: * * | 0 | | | 120 |
                                                 'BLOCK(30)' \
   -stim times 8 '1D: 120 * | | | | 60 | | 0 | '
                                                 'BLOCK(30)' \
   -stim times 9 '1D: * * | | 60 | | | 0 | | 120 | '
                                                 'BLOCK(30)' \

→ stimulus label

   -stim label 1 tneg -stim label 2 tpos -stim label 3 tneu
   -stim label 4 eneg -stim label 5 epos -stim label 6 eneu
   -stim label 7 fneg -stim label 8 fpos -stim label 9 fneu
```

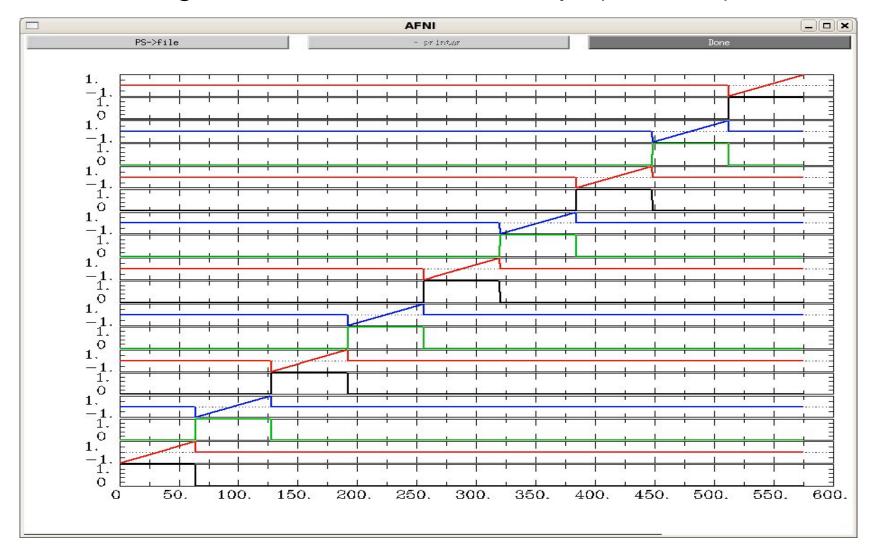
continued ...

Regression with Multiple Model Files (continued)

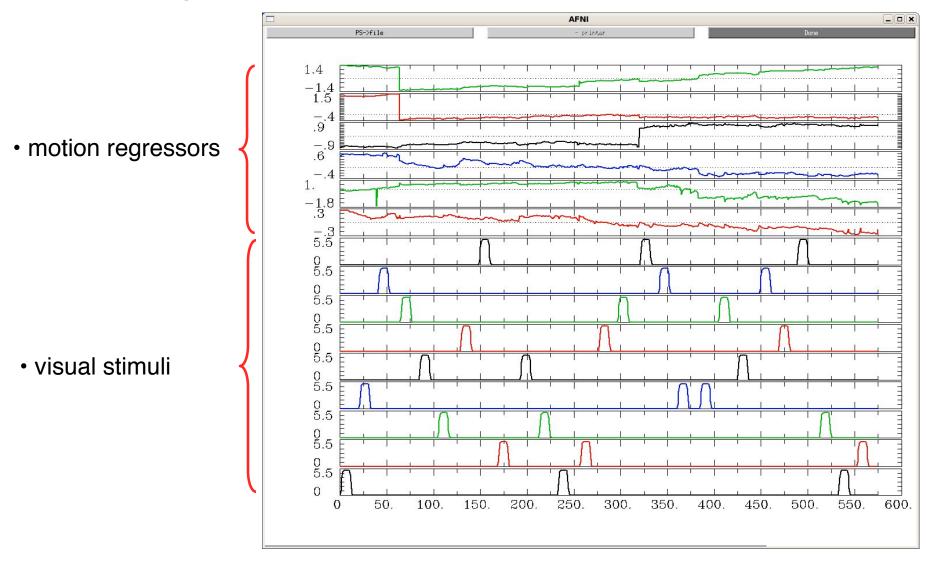

```
→ motion regressor
-stim file 10 motion.1D'[0]' -stim base 10
                                                            → apply to baseline
-stim file 11 motion.1D'[1]' -stim base 11
-stim file 12 motion.1D'[2]' -stim base 12
-stim file 13 motion.1D'[3]' -stim base 13
-stim file 14 motion.1D'[4]' -stim base 14
-stim file 15 motion.1D'[5]' -stim base 15
-gltsym 'SYM: tpos -epos' -glt label 1 TPvsEP
                                                            → symbolic GLT
                                                            Iabel the GLT
-gltsym 'SYM: tpos -tneg' -glt label 2 TPvsTNg
-gltsym 'SYM: tpos tneu tneg -epos -eneu -eneg'
        -qlt label 3 TvsE

    statistic types to output

-fout -tout
-bucket rall func -fitts rall fitts
-xjpeg rall xmat.jpg -x1D rall xmat.x1D
```


- the 9 visual stimulus classes were given using -stim times
- it is important to include motion parameters as regressors
 - > this helps to exclude stimulus correlated motion artifacts
 - > the 6 motion parameters were given using -stim file
 - > 3dvolreg has previously been run, with the -1Dfile option

Regressor Matrix for This Script (via -xjpeg)


- 18 baseline regressors
 - > linear baseline
 - > 9 runs times 2 params
- 9 visual stimulus regressors
 - > 3x3 stimulus design
- 6 motion regressors
 - > 3 shifts, 3 rotations

Regressor Matrix for This Script (via -x1D)

baseline regressors: via 1dplot -sepscl xmat_rall.x1D'[0..18]'

Regressor Matrix for This Script (via -x1D)

1dplot -sepscl xmat_rall.x1D'[18..\$]'

```
-concat '1D: 0 64 128 192 256 320 384 448 512'
```

- "File" that indicates where distinct imaging runs start inside the input file
 - > Numbers are the time indexes inside the file for start of runs
 - > In this case, a .1D file put directly on the command line
 - Could also be a filename, if you want to store that data externally

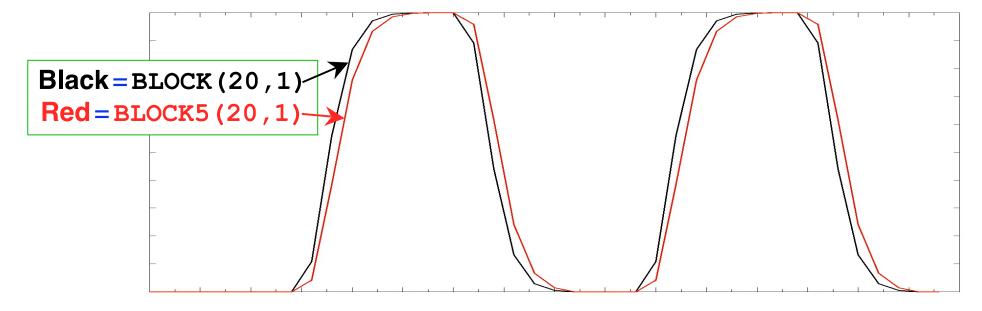
```
-num_stimts 15
```

• We have 9 visual stimuli (+6 motion), so will need 9 -stim_times below

```
-stim_times 1

>'1D: 0.0 * | | 120.0 | | | | 60.0'

'BLOCK(20,1)
```


- "File" with 9 lines, each line specifying the start time in seconds for the stimuli within the corresponding imaging run, with the time measured relative to the start of the imaging run itself
- HRF for each block stimulus is now specified to go to maximum value of 1 (compare to graphs on previous slide)
 - This feature is useful when converting FMRI response magnitude to be in units of percent of the mean

Aside: the 'BLOCK()' HRF Model

• **BLOCK (L)** is convolution of square wave of duration **L** with "gamma variate function" $t^4e^{-t}/[4^4e^{-4}]$ (peak value=1 at t=4):

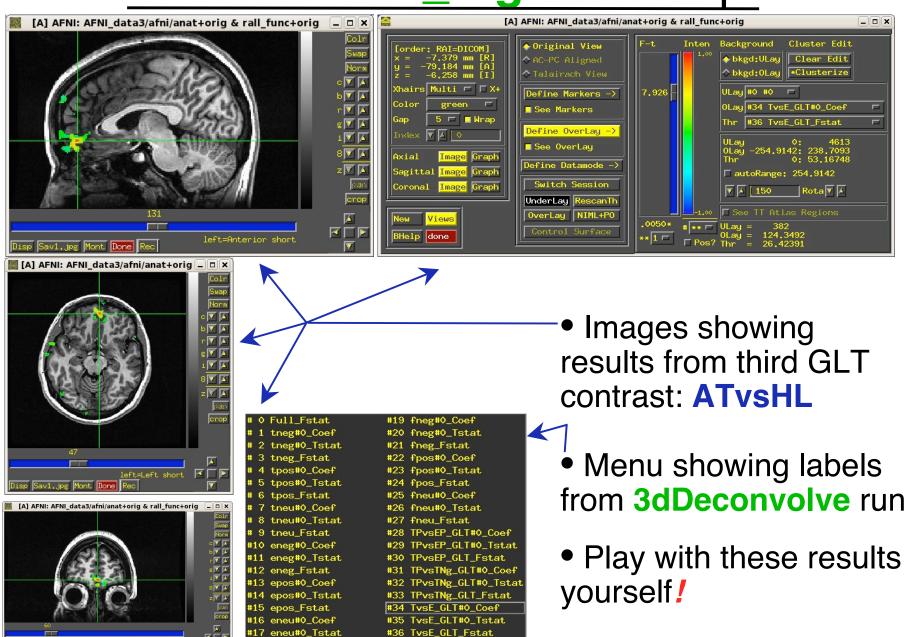
$$h(t) = \int_0^{\min(t,L)} s^4 e^{-s} / [4^4 e^{-4}] ds$$

- "Hidden" option: **BLOCK5** replaces "4" with "5" in the above
 - Slightly more delayed rise and fall times
- BLOCK (L,1) makes peak amplitude of block response = 1


```
-gltsym 'SYM: tpos -epos' -glt_label 1 TPvsEP
```

- GLTs are General Linear Tests
- 3dDeconvolve provides test statistics for each regressor and stimulus class separately, but if you want to test combinations or contrasts of the β weights in each voxel, you need the -gltsym option
- Example above tests the difference between the β weights for the Positive Telephone and the Positive Email responses
 - Starting with SYM: means symbolic input is on command line
 Otherwise inputs will be read from a file
 - > Symbolic names for each stimulus class are taken from -stim_label options
 - Stimulus label can be preceded by + or to indicate sign to use in combination of β weights
- Goal is to test a linear combination of the β weights
 - Tests if $\beta_{tpos} \beta_{epos} = 0$
 - e.g., does tpos get a bigger response than epos ?
- Quiz: what would 'SYM: tpos epos' test?

 $\mathbf{0} = \mathbf{0} + \mathbf{0}$ + $\mathbf{0}$


```
-gltsym 'SYM: tpos tneu tneg -epos -eneu -eneg'
-glt_label 3 TvsE
```

- Goal is to test if $(\beta_{tpos} + \beta_{tneu} + \beta_{tneg}) (\beta_{epos} + \beta_{eneu} + \beta_{eneg}) = 0$
 - Regions where this statistic is significant have different amounts of (average) BOLD signal change in the telephone tasks versus the email tasks
- -glt_label 3 TvsE option is used to attach a meaningful label to the resulting statistics sub-bricks
 - Output includes the ordered summation of the β weights and the associated statistical parameters (t- and/or F-statistics)

-fout -tout

- = output both F- and t-statistics for each stimulus class (-fout) and stimulus coefficient (-tout) — but not for the baseline coefficients (if you want baseline statistics: -bout)
- The full model statistic is an F-statistic that shows how well the sum of all 9 input model time series fits voxel time series data
 - ➤ Compared to how well *just* the baseline model time series fit the data times (in this example, have 24 baseline regressor columns in the matrix 18 for the linear baseline, plus 6 for motion regressors)
- The individual stimulus classes also will get individual F- and/or t-statistics indicating the significance of their individual incremental contributions to the data time series fit
 - > e.g., F_{tpos} tells if the full model explains more of the data variability than the model with tpos omitted and all other model components included

Results of rall_regress Script

#18 eneu_Fstat

Statistics from 3dDeconvolve

- An F-statistic measures significance of how much a model component (stimulus class) reduced the variance (sum of squares) of data time series residual
 - After all the other model components were given their chance to reduce the variance
 - > Residuals = data model fit = errors = -errts
 - > A *t*-statistic sub-brick measures impact of one coefficient (of course, **BLOCK** has only one coefficient)
- Full F measures how much the all signal regressors combined reduced the variance over just the baseline regressors (sub-brick #0)
- Individual partial-model Fs measures how much each individual signal regressor reduced data variance over the full model with that regressor excluded (e.g., sub-bricks #3, #6, #9)
- The Coef sub-bricks are the β weights (e.g., #1, #4, #7, #10) for the individual regressors
- Also present: GLT coefficients and statistics

#19 fneg#0_Coef # 0 Full_Fstat # 1 tneg#O_Coef #20 fneg#0_Tstat # 2 tneg#0_Tstat #21 fneg_Fstat # 3 tneg_Fstat #22 fpos#0_Coef # 4 tpos#0_Coef #23 fpos#0_Tstat # 5 tpos#0_Tstat #24 fpos_Fstat #25 fneu#0_Coef # 6 tpos_Fstat # 7 tneu#O_Coef #26 fneu#0_Tstat # 8 tneu#0_Tstat #27 fneu_Fstat # 9 tneu Fstat #28 TPvsEP_GLT#0_Coef #10 eneg#0_Coef #29 TPvsEP_GLT#0_Tstat #11 eneg#0_Tstat #30 TPvsEP GLT Fstat #12 eneg_Fstat #31 TPvsTNg_GLT#0_Coef #13 epos#0_Coef #32 TPvsTNg_GLT#0_Tstat #14 epos#0_Tstat #33 TPvsTNg_GLT_Fstat #15 epos_Fstat #34 TvsE_GLT#0_Coef #16 eneu#Q_Coef #35 TvsE_GLT#0_Tstat #17 eneu#0_Tstat #36 TvsE_GLT_Fstat #18 eneu_Fstat

Group Analysis: will be carried out on β or **GLT** coefs from single-subject analyses